
From Fortran to C
Constant Path Effects

Pointer Effects

Integrating Pointer Analyses

in PIPS Effect Analyses
for an effective parallelization

of C programs

Béatrice Creusillet

HPC Project

1st PIPS’days, october 2010, Paris

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

PIPS phases scheduling for Fortran programs

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

What are Effects?

Memory effects of a
program component

Related to a memory store

Proper and Cumulated

May or Exact

Read, Write, IN or OUT

Simple or Convex (regions)

K = 1

C loop effects :

C <may be written >: A(*,*)

C <may be read >: A(*,*)>

do I = 1,N

C loop body effects :

C <may be written >: A(*,*)

C <must be written >: A(I,K)

A(I,K) = B(K,I)

K = K+1

C <may be read >: A(*,*)

C <must be read >: A(I,K)

C(K,I) = A(I,K)

enddo

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

From Fortran...

variable names always refer to the same memory location

... to C

=⇒ Pointer Analysis

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

From Fortran...

variable names always refer to the same memory location

... to C

a single variable name may refer to several memory locations

=⇒ Pointer Analysis

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

From Fortran...

variable names always refer to the same memory location

symbolic reference variable parts are restricted to array indices

... to C

a single variable name may refer to several memory locations

=⇒ Pointer Analysis

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

From Fortran...

variable names always refer to the same memory location

symbolic reference variable parts are restricted to array indices

an effect on p(i,k) is an effect on p[σ(i)][σ(k)]

... to C

a single variable name may refer to several memory locations

=⇒ Pointer Analysis

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

From Fortran...

variable names always refer to the same memory location

symbolic reference variable parts are restricted to array indices

an effect on p(i,k) is an effect on p[σ(i)][σ(k)]

... to C

a single variable name may refer to several memory locations

every element of a symbolic reference may be a variable part

=⇒ Pointer Analysis

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

From Fortran...

variable names always refer to the same memory location

symbolic reference variable parts are restricted to array indices

an effect on p(i,k) is an effect on p[σ(i)][σ(k)]

... to C

a single variable name may refer to several memory locations

every element of a symbolic reference may be a variable part

an effect on p[i][k] is an effect on σ(σ(p)[σ(i)])[σ(k)] !

=⇒ Pointer Analysis

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

What Pointer Analysis?

Pointer analyses are ... global ... hence costly/unprecise

Precise enough

for dependence tests (may analyses)
for region analyses (exact analyses)
for targeted applications / program transformations

Trade-off between time/memory consumption and precision

Compatible with existing PIPS phases...

Landi and Ryder (20 years of PLDI, 2003)

We predict that the future will not see a best Pointer May-alias

algorithm whose results are suitable for any application, but

rather algorithms designed to optimize the tradeoffs to best

meet the requirements of some particular application.

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects (François Irigoin’s idea)

Build effects with no dereferencements

Fully compatible with existing phases ,

Orthogonal to the choice of a pointer analysis

Choice criteria

precision
cost

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects: Example

int **p, **q, *a, *b;

a = (int *) malloc(10*sizeof(int)); // malloc_1

b = (int *) malloc(10*sizeof(int)); // malloc_2

p = &a;

p[0][2] = 0;

p = &b;

q=p;

p[0][2] = 0;

q[0][2] = 0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects: Example

int **p, **q, *a, *b;

a = (int *) malloc(10*sizeof(int)); // malloc_1

b = (int *) malloc(10*sizeof(int)); // malloc_2

p = &a;

p[0][2] = 0;

p = &b;

q=p;

p[0][2] = 0;

q[0][2] = 0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects: Example

int **p, **q, *a, *b;

a = (int *) malloc(10*sizeof(int)); // malloc_1

b = (int *) malloc(10*sizeof(int)); // malloc_2

p = &a;

p[0][2] = 0;

p = &b;

q=p;

p[0][2] = 0;

q[0][2] = 0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects: Example

int **p, **q, *a, *b;

a = (int *) malloc(10*sizeof(int)); // malloc_1

b = (int *) malloc(10*sizeof(int)); // malloc_2

p = &a;

// <must be read >: a p

// <must be written>: malloc_1[2]

p[0][2] = 0;

p = &b;

q=p;

// <must be read >: b p

// <must be written>: malloc_2[2]

p[0][2] = 0;

// <must be read >: b q

// <must be written>: malloc_2[2]

q[0][2] = 0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects: Example

int **p, **q, *a, *b;

a = (int *) malloc(10*sizeof(int)); // malloc_1

b = (int *) malloc(10*sizeof(int)); // malloc_2

p = &a;

// <must be read >: a p

// <must be written>: malloc_1[2]

p[0][2] = 0;

p = &b;

q=p;

// <must be read >: b p

// <must be written>: malloc_2[2]

p[0][2] = 0;

// <must be read >: b q

// <must be written>: malloc_2[2]

q[0][2] = 0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

PIPS phase scheduling with Constant Path Effects

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects may prevent parallelization

float *p;

p = foo(); // something that cannot be exactly represented

....

for(i=0; i<n; i++)

p[i] = 0.0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects may prevent parallelization

float *p;

p = foo(); // something that cannot be exactly represented

....

for(i=0; i<n; i++)

// original effect:

// <must be written>: p[i]

p[i] = 0.0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects may prevent parallelization

float *p;

p = foo(); // something that cannot be exactly represented

....

for(i=0; i<n; i++)

// original effect:

// <must be written>: p[i]

// points-to: {(p, *ANY_MODULE*:*ANYWHERE*, May)}

p[i] = 0.0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Effects may prevent parallelization

float *p;

p = foo(); // something that cannot be exactly represented

....

for(i=0; i<n; i++)

// original effect:

// <must be written>: p[i]

// points-to: {(p, *ANY_MODULE*:*ANYWHERE*, May)}

// constant path effect:

// <may be written >: *ANY_MODULE*:*ANYWHERE*

p[i] = 0.0;

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Pointer Effects

Preserve locally valid effects with dereferencements

Replace modified pointers with their values

Coarse Grain Parallelization: small adaptations

But not compatible with other existing phases!

What pointer analysis?

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Points-to may not be precise enough

float **p, **a;

...

if (...) p = &a[0]; else p = &a[1];

for(i=0; i<n; i++)

{

float * q = p[i];

for (j=0; i<n; j++) q[j] = 0.0;

}

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Points-to may not be precise enough

float **p, **a;

...

if (...) p = &a[0]; else p = &a[1];

// points-to: {(p, a[0], may),(p, a[1], may)}

for(i=0; i<n; i++)

{

float * q = p[i];

for (j=0; i<n; j++) q[j] = 0.0;

}

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Points-to may not be precise enough

float **p, **a;

...

if (...) p = &a[0]; else p = &a[1];

// points-to: {(p, a[0], may),(p, a[1], may)}

for(i=0; i<n; i++)

{

float * q = p[i];

// pointer effect:

// <must be written>: q[0:n-1]

for (j=0; i<n; j++) q[j] = 0.0;

}

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Points-to may not be precise enough

float **p, **a;

...

if (...) p = &a[0]; else p = &a[1];

// points-to: {(p, a[0], may),(p, a[1], may)}

for(i=0; i<n; i++)

{

float * q = p[i];

// points-to: {(q, a[i], may),(q, a[i+1], may)}

// pointer effect:

// <must be written>: q[0:n-1]

for (j=0; i<n; j++) q[j] = 0.0;

}

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Points-to may not be precise enough

float **p, **a;

...

if (...) p = &a[0]; else p = &a[1];

// points-to: {(p, a[0], may),(p, a[1], may)}

for(i=0; i<n; i++)

// loop body pointer effect:

// <may be written >: a[i][0:n-1] a[i+1][0:n-1]

{

float * q = p[i];

// points-to: {(q, a[i], may),(q, a[i+1], may)}

// pointer effect:

// <must be written>: q[0:n-1]

for (j=0; i<n; j++) q[j] = 0.0;

}

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Constant Path Points-to may not be precise enough

float **p, **a;

...

if (...) p = &a[0]; else p = &a[1];

// points-to: {(p, a[0], may),(p, a[1], may)}

for(i=0; i<n; i++)

// loop body pointer effect:

// <may be written >: a[i][0:n-1] a[i+1][0:n-1]

// wished loop body pointer effect:

// <must be written>: p[i][0:n-1]

{

float * q = p[i];

// points-to: {(q, a[i], may),(q, a[i+1], may)}

// pointer effect:

// <must be written>: q[0:n-1]

for (j=0; i<n; j++) q[j] = 0.0;

}

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Pointer Values

Keep pointer values relations given by programmer
ex: q = p[i] =⇒ p==q[i] (exact)

Preserve locally valid pointer values relations with
dereferencements

=⇒ more precision ,

/ Client analyses must be adapted

/ Maybe more costly than constant path points-to

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

PIPS phases scheduling with Pointer Values

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses



From Fortran to C
Constant Path Effects

Pointer Effects

Conclusion

As many pointer analyses as C static analysers

Keep an eye on actual needs/constraints!

Pointer Values analysis under construction

Missing features:

loops
intrinsics
interprocedural analysis
recursive types

long term thinking needed on internal representation

Béatrice Creusillet Integrating Pointer Analyses in PIPS Effect Analyses


	From Fortran to C
	Constant Path Effects
	Pointer Effects

